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Abstract-A three-time level implicit scheme, which is unconditionally stable and convergent, is employed 
for the numerical solution of phase-change problems, on the basis of an analytical approach consisting in 
the approximation of the latent heat effect by a large heat capacity over a small temperature range. Since 
the temperature dependent coefficients in the resulting parabolic equations are evaluated at the inter- 
mediate time level, the complication of solving a set of nonlinear algebraic equations at each time step is 
avoided. The numerical results thus obtained are satisfactorily compared with the available analytical 

solutions. 

NOMENCLATURE 

C, specific heat [J/kgK] ; 
C = cp, volumetric heat capacity rJ/m3K1; 

Y? 
H, 
k, 
K 

$Ax2), 
4 

7: 

x, y, z, 

local order of accuiacy iI?/s] ; - 
surface temperature [“Cl ; 
enthalpy per unit volume [J/m31 ; 
thermal conductivity [W/mK]; 
thermal conductivity integral [W/m]; 
slab thickness [m] ; 
the remainder in Taylor series expan- 
sion and of the order (8x2); 
temperature: solution of the heat con- 
duction equations [“Cl; 
temperature: solution ofthe numerical 
equations [‘Cl; 
position coordinates [m]. 

Greek letters 

Y X’ difference operator: 

6, 
r,q = q_+ - q_+; 

Dirac “function”: 
ix, grid spacing in the x direction [m] ; 

At, temperature semi-interval across t F 

WI: 
1 

time step [s]: 
step function; 
heat of phase change per unit volume 

[J/m31 ; 
difference operator: 

W,Th = 
:‘J+‘+f + l;Th-+ 

2 
Thf’ _ Th-’ 

= 

2 ; 

phase front position [m] ; 
density [kg/m31 ; 
time [s] : 
initial temperature distribution [“Cl. 

Subscripts 
a. surface ; 

.L phase change; 
i, lattice parameter in a one-dimensional 

grid: x = iAx; 

;, 
reference : 
initial ; 

1, solid region; 
2, liquid region. 
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Superscripts 
h, time level: z = hAz: 
-1 equivalent; 
* approximated. 

INTRODUCTlON 

A LARGE number of current applications of 
engineering interest involve solution of the 
equation describing heat conduction with a 
change of phase. However, while many im- 
portant theoretical results are available about 
existence uniqueness, and properties of classical 
solutions (see e.g. [7, 8]), the literature surveys 
[2, 3, 19, 211 reveal that most actual analytical 
solutions deal only with the one-dimensional 
geometry and very special boundary conditions 
and cannot thus be extended to many practical 
problems. 

Numerical methods have also been proposed 
by several authors (see [lo, 211) but, especially 
in the multidimensional case, their applicability 
is limited by their great complexity. Therefore 
it can be inferred that the conventional mathe- 
matical description, considering an interface 
surface which moves either into the solid region 
(melting) or into the liquid region (freezing) in 
accordance with the relative magnitudes of the 
temperature gradients on either side of it, does 
not yield to a general mathematical formulation 
which combines good accuracy with computa- 
tional ease. 

Fortunately another model is possible which 
has a sound theoretical basis and leads to a 
much more compact and convenient analytical 
formulation. 

Most phase-change processes involve sub- 
stances which, like the foodstuffs or the metal 
alloys, are not pure and, therefore, the latent 
heat effect can be expressed by a finite temperature 
dependent heat capacity, since it occurs over a 
temperature range [4,23]. 

This feature suggests that the true latent heat 
effect in pure substances can be approximated 
by a large heat capacity over a small temperature 
range. Such an intuitive approach, proposed in 
[ 1. 241, has been employed in recent years for 

numerical calculations in [6, 9, 11. 221, while 
a rigorous analysis, based on the concept of 
“generalized (weak) solution” and including a 
convergence proof, has been given in [12, 13, 
15,201. Nevertheless this procedure has not been 
used as much as its simplicity would suggest. 
This is undoubtedly due to the difficulties 
involved in the solution of the resulting heat 
conduction equation which has critically tem- 
perature dependent coefficients. 

The intent of the present work is to show how 
a three-time level difference method, which has 
been recently proposed for the solution of heat 
conduction problems when the thermophysical 
properties depend on temperature [4, 51, can 
be advantageously applied also to the solution 
of melting and freezing problems, provided that 
they are formulated as previously outlined. 

FORMULATION OF THE PROBLEM 

Usually a problem with a phase transition 
of a substance from one state to another, in the 
one-dimensional case under boundary conditions 
of the first kind, is mathematically formulated 
as follows [ 181 

c,(r): = & k,(t); : ,[ 1 
0 < x < 5(z), 

z > 0; (1) 

t,(x,O) = q,(x) < ty 0 < x < ((0): (2) 

t,(O, z) = f,(z) < tf: z > 0, (3) 

where subscript 1 refers to the “solid” region, 
and : 

C,(t); = ; k,(t); ; [ 1 
((7) < x < L, z > 0; (4) 

t& 0) = q,(x) 3 t/: C(O) < X < L; (5) 

1,(L. z) = f&Z) > t/ z>o (6) 

where subscript 2 refers to the “liquid” region.* 
___- 

* Each of (3) and (6) can be replaced by a condition of 
prescribed x-derivate on .x = 0, x = L respectively. In 
(lH6) one assumes 0 < i(O) < L; trivial modifications are 
needed in this scheme for the cases t(O) = 0 or t(O) = L. 
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On the interface it is 

r,Wr), r] = t,[t(7), 73 = ts 

an d 
(7) 

k,(t) 2 - k,(t) 2 = Iz 2 (8) 

where I is the heat of phase change per unit 
volume. 

However, based on a physical approach, a 
different mathematical model can be tried. 
Boundary condition (8) in fact, stems from the 
“jump” of magnitude L which the enthalpy per 
unit volume H undergoes at the temperature 
of the phase transition tf. Therefore, from the 
enthalpy definition 

H(t) = j C(t) dt + $(t - t,); 

where f < tf is arbitrarily chosen, an “equiva- 
lent” heat capacity per unit volume c(t) can also 
be defined [6, l&20,22] 

dfilft) 
C(t) = --&- = C(t) + 126(t - t,); 

C(t) = 
C,(t), t < t/ 
C,(t), t > ts 

(10) 

where ii(t - tf) is the Dira~-function. 
Substituting in equations (1) and (4) the 

following expression is derived 

t?(t); = ; k(t); ; 
-[ 1 

k(t) = 
k,(t), t < tr 

k,(t), t > tf 
(11) 

It can be shown that every sufficiently smooth 
solution of (ll), such that the regions t > tf, 
t < tf are separated by a unique continuously 
differentiable curve x = t(r), verifies condition 
(8). In fact, let us consider the integrals 1, and 1, 
of the left and right members of equation (11) in 
a small layer ([ - E < x G { + a) symmetrical 
with respect to the interface and then let us take 
the limits as c + 0. The following relationships 

are obtained 

s r+e 

lim I, = lim 
E’O E-+0 

i?(t) ; dx 

r-c 
;+e 

= lim 
E-+0 [S 

C(t) 4 dx 

r-E 

- k(t); _ 
I 1 . (13) 
X-<-E 

Since I, = I,, condition (8) can be immediately 
derived. Therefore, if a numerical solution is 
tried, instead of starting from the conjugated 
problems (1) and (4) coupled through condition 
(8), a single equation (11) can be considered. 
Actually this step is not a straightforward one: 
equation (11), in fact, involves a delta-function 
in the definition of c(t) and must be regarded 
thus as a “generalized” formulation for problem 
(l), (4) and (8) to be dealt with on the basis of 
the theory of distributions. However, due to the 
practical intent of this work, only the theoretical 
results which are needed to further proceed with 
a meaningful numerical solution will be men- 
tioned : 
1. Under suitable assumptions (unessential for 
practical purposes) on the data and the coeffic- 
ients, there exists a generalized solution to the 
problem (ll), (2) (3), (5) and (6)t which is 
unique and, by means of elementary calcula- 
tions, can be shown to coincide with the classical 
solution to the original problem (l)-(8) when- 
ever the latter exists. 
2. Such a solution can be obtained as the limit 
of a uniformly convergent sequence of classical 
solutions to approximating problems, deduced 
by smoothing the coefficients in equation (11) 
following a few general rules: 
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(a) The delta-function in the definition of C(t) 
must be replaced by a deltaform function 
fi(t - tS’ At) which assumes large but finite 
values in the semi-interval At across tf where it 
is different from zero. Consequently a smoothed 
heat capacity C*(t) can be defined 

c*(t) = 
c,w. t < t/. - At 

c,w, t > tf + At 
(14) 

and 

t,+Al 

j C*(t)dt = I_ + y C,(t) dt 
L~-AI If-AL 

l, +A1 

+ s C,(t) dt 

11 

(15) 

which retains the enthalpy variations. 
(b) Similarly a smoothed thermal conductivity 
k*(t) has to be introduced, subjected to the 
conditions 

k*(t) = 
k,(t), t < tf - At 

k,(t), t > tf + At' 
(16) 

.; A generalized solution to the problem (11). (2). (3). (5) 

and (6) in the rectangle: 0 < x < I,, 0 : r < 0 is every 

measurable function t(x, r) satisfying the integral identity 
(I 1. 

iii 

 ̂ ?’ 
ff[t(X, r)] ; Ffx. r) + K[t(u. t)] G F(x, r) I dx dr 

. * // 0 

1. B 

_L H[dx)] Rx. 0) dx + J‘i c3 
+ K[f;(T)] - KY, r) 

c’u ~1-0 
0 ,I 

where 

K(t) is defined as: 

cp(x) is given by 

K(t) = I‘ k(t)dt 
I, 

and F(x, r) is any function which is continously differenti- 

able, twice with respect to x and once with respect to L and 
such that 

F(0. r) = F(L. r) = F(X. 0) = 0. (IV) 

The results of [IS] and [20] concerning similar cases can 

be still utilized to show the existence and uniqueness of the 

generalized solution thus defined. 

Thus the approximating problems are form- 
ulated as follows: 

iit ? ?t 
C*(t) iiz = ii.u k*(t) ;l.y 

[ 1 (17) 

with initial, and boundary conditions given by 
(2). (3), (5) and (6). Each of these problems 
possesses unique classical solution [ 161 which, 
according to points 1 and 2 and to the quoted 
results of [15. 201, as At -+ 0 tends to the 
generalized solution of the Stefan problem. 

The actual smoothing can be performed in 
many ways. Several shapes have been tested 
numerically and the choice does not seem to be 
critical. 

A definition of C’*(t) and K*(t) which works 
well and, owing to its simplicity, turns out to be 
very suitable for practical applications is des- 
cribed here. 

Suppose that C,, C,. k, and k, do not depend 
on t. then in the interval: tJ - At < t B Ts + At 
the following definitions may be assumed 

c*(t) = & + c, + c, 
2 (18) 

and 

k -k 
k*(t) = k, + w[f - (ts - At)]. (19) 

At this point it is worth mentioning that an 
important feature of the procedure outlined here 
is that the coefficient smoothing is carried out 
with respect to t and so it does not depend on 
whether the problems are one-dimensional or 
multi-dimensional. The extension to the multi- 
dimensional case therefore is straightforward 
and yields to equations which are formally 
analogous to equation (17). For example, in the 
three-dimensional case the equation correspond- 
ing to equation (17) is 

(20) 
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THE DIFFERENCE SCHEME 

Only the numerical solution of equation (17) 
under boundary conditions of the first kind will 
be considered in detail here. However, since the 
three-time level implicit scheme employed here 
f4, 171 has been extended to the multi-dimen- 
sional case and to different boundary conditions 
[5], it can be said that, in principle, all the phase- 
change problems can be solved in this same way. 

By using central difference operators the 
following approximation for equation (17) can 
be obtained 

(21) 

where (7’1) is the average temperature: 

(7’;) = f(T;+’ + T: + T;-I). 

Equation (21) can be rewritten as 

C*~T~)~T~+ ’ - Tf-‘) 

+ U-f,, - T;) + CT;;,’ - T;-‘)] 

- k-[(T:+’ - T;_f;) + (Tf - Tf_ J 

+ (T;-’ - T;:;)]j 

where 

k+ = k*(Tf++)g k* (TF+$ ") 

k- = k*(T;_,) g k” (T’+$). 

(22) 

(23) 

(24) 

The expressions (24) do not alter the order of 
accuracy of formula (23) and involve values of T 
at grid points only. Angther important feature 
of formula (23) is that the coefficients are 
computed at the intermediate time level: resort- 
ing to iterations is thus avoided, since the 
tridiagonal system of difference equations to 
be solved at each time step is linear. 

When only data at T = 0 is given, in order to 
start the calculations it is necessary to obtain 
the data at z = AZ from a two level formula of 
comparable accuracy. 

It can be shown that the three-time level 
implicit scheme described here is unconditionally 
stable and convergent [4, 171. By a Taylor’s 
series expansion the local order of accuracy of 
equation (23) can be written as 

$= 

- 

+ = O(AT* + Ax*). (25) 

RESULTS 

The numerical method described in the 
previous sections has been checked against the 
results of available analytical solutions of one- 
dimensional freezing probIems [18]. A Fortran 
IV program, based on formula (23) has been 
written to calculate the temperature distribution 
in a slab with variable thermophysical properties. 

The thermophysical properties used in the 
computations were those of the system water-ice. 
Constant values of the heat capacity and of the 
thermal conductivity were assumed in the solid 
and in the liquid region; in the phase-change 
zone the heat capacity and the thermal conduct- 
ivity were smoothed according to def~itions (18) 
and (19). Since freezing problems were treated, 
the phase front was taken to coincide with the 
isotherm (tf - At), corresponding to the lowest 
temperature end of the freezing zone. 

Reference was made to a layer subjected to 
the following boundary conditions 

t,(O, z) = tp = const: z>o (26) 

(27) 

First a simplified initial condition was con- 
sidered assuming the temperature of the water 
to be at the freezing point, with no ice present: 

t&O) = t, = tf = const; 

r(o) = 0 < X < L. (28) 
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0, I .________Analyticol solution - 

FIG. 1. kIterfaCe histories. 

In the calculations 41 equally spaced nodal 
points were used (AX = 0.0125 m: L = 0.5 m) 
with time steps variable from 200 to 600 s but 
constant within each run. The phase change was 
usually assumed to take place jn a temperature 
interval of 05 K, but the results obtained were 
rather insensitive to the particular choice 
operated. In Fig, 1 the computed phase front 
position curves are compared with the corres- 
pond@ analytical sofution for different values 
of the initial “jump” (t, - te) in the external 
surface temperature. In Fig. 2 the calculated 
tem~rature distributions at different time values 
are compared with the analytical solutions For 

FIG. 2. Temperature distribution at different time values. 

the particular case: r, - I, = 20 K. The accuracy 
of the results plotted in Figs. 1 and 2 is always 
better than 1 per cent. 

A phase change problem with the initial 
temperature of the water above the freezing 
point was then considered. The initial and 
boundary conditions were taken to coincide 
with the analytical solution at z = 72000 s 
yielded by the following boundary and initial 
conditions : 

t,(O,t) = r, = -20°C: r>O (29) 

t,ix,O) = t, = 10°C; ((0) = 0 SS X d L. 130) 

Tat& 1 
___ . . .._ - .-__ . . ..-_.. _.- .._ ~_ 

e(m) 
5 x 1()- 4 (S) --.~~~.-~...--l_-~ _-_- _._ 

Analytical SC& Numerical sol. 
-_____ ~.-~~~~_-_-_.- .-.- 

7,2 0.123 0123 
9.0 0.138 0138 

10.8 0.151 0,156 
12.6 0,163 0.166 
14.4 0.175 0*180 
16.2 0.185 0189 
i8.0 0.195 0199 
19.8 0.205 020s 
21.6 0.214 0216 
23-4 0.223 0.225 
25.2 a231 0233 
2TO 0239 0239 
2RR 0,247 0247 

-- .__. __-.._ . . ..-.- ---- -A 
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In order to use in the comparison the analytical 
solution for a semi-infinite body, calculations 
were stopped at z = 288000s as soon as the 
temperature t(L, z) started to change appreciably. 

tion does not depend on the geometry con- 
sidered, extension to multidimensional cases is 
straightforward. 

When two phases are simultaneously present, 
as in this case, the choice of the temperature 
interval in which freezing is assumed to take 
place becomes critical. Numerical calculations 
have shown that good results are obtained only 
if the phase change interval embraces at least 
2-3 nodes of the network along the x-axis [22]. 

As a final remark it is worth indicating that 
the assumption of pure conduction in the liquid 
phase is not always strictly correct, but ex- 
perience has shown that for design calculations 
an equivalent thermal conductivity dependent 
on the Rayleigh number can be used when 
convection is of importance [14], avoiding thus 
changes in the problem formulation. 

T x 10-4(s) .Y = 0.1 m 

Table 2 

t(x. T) (“C) 

x = 0.2 m x = 0.4 m 

An. sol. Num. sol. An. sol. Num. sol. An. sol. Num. sol. 

7.2 - 3.12 - 3.12 5.81 5.81 9.86 9.86 
14.4 - 8.44 - 8.95 1.61 1.23 8.75 8.72 
21.6 - 10.54 - 10.82 - 1.26 -1.81 I.24 7.18 
28.8 -11.80 - 12.02 - 3.72 -4.13 5.81 5.13 

Moreover too large temperature intervals are 
not advisable since strong divergence from the 
original problem would arise. In the example 
considered here 81 equally spaced nodes were 
used (Ax = O-0125 m; L = 1 m) and a phase- 
change interval of 2 K was assumed. The results 
obtained for the phase front histories and the 
temperature distributions are reported in Table 
1 and in Table 2 respectively. The accuracy 
(r3 per cent) is still well within the limits 
imposed for engineering calculations. 

Run time for the Fortran program is about 
20 s on a CDC 6600 computer with a grid of 41 
nodal points and 1000 time steps. 
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SOLUTION NUMERIQUE DES PROBLEMES DE CHANGEMENT DE PHASE 

R&am&-Un schema imp&cite a trois niveaux de temps qui est inconditionnellement stable et convergent, 
est employt pour la solution numerique de problemes de changement de phase sur la base d’une representa- 
tion analytique de l’effet de chaleur latente par une grande capacite caloritique sur un petit domaine de 
temperature. Puisque les coefficients d&pendants de la temperature dans les equations paraboliques resul- 
tames sont halt& au niveau intermtdiaire de temps, on peut eviter la resolution compliquee dun systeme 
d’equations algtbriques non linbires a chaque pas de temps. Les &&tats numeriques ainsi obtenus sont 

compares de maniere satisfaisante aux solutions analytiques connues. 

NUMERISCHE LOSUNG VON PHASENANDERUNGSPROBLEMEN 

Z~rn~nfa~~g-Ein Drei-Zeiten-E~nen-System. das absolut stabil und konvergent ist. wird fur die 
numerische L&sung von Phasenlnderungsproblemen verwendet. 

Fiir kleine Temperaturbereiche wird die latente Wlrme durch eine grosse Warmekapazitlt angenlhert. 
Die’temperaturabhlngigen Koeffizienten in den resultierenden parabolischen Gleichungen wurden auf 
einer Zwischenzeitebene abgeschfitzt, womit die Schwierigkeit, eine Reihe von nichtlinearen algebraischen 
Gleichungen bei jedem Zeitschritt zu l&en, vermieden ist. Die so erhaltenen numerischen Liisungen 

zeigten mit den verfiigbaren analytischei~ Lijsungen zufriedensteliende ~bereinstimmung. 

YHCcnEHHQE PElIIEHME 3.4AAY 0 (DA30BbIX HEPEXO&~N 

f~~HoTa~~-~~~ ~nc3le~noi 0 p~tne~nn na;lau 0 $a30abl;x nepexonax mnoabapeTcfl aiico- 

JIKtTHO YCTO~~~Ba~ El CXO~K~~a~CK HeRBHaR CXeMa C TPeMR npeMe~i~ibIM~1 ~pOBI~n~31 
(TpexcnotiHan CxeMa). Me’ro;r CO~TOAT B TOM, 9TO CtipbITbIZt TeZIOBOli B#@eKT ElIIIIpOltCU- 

MNpyeTCrl 6OJIhIlWvl 3Ha'lt'HIZeM TenJIOeMIiOCTIl B MajlOM TeMTIepaTppHOM WalENOHe. 

nOf'KOJIb@ 3aBMClWfPle OT TeMIIepaTSpbI H(O3@@4~LIeHTbI B llapa60JIWieCK~IX ypaBHeH&WIX 

[~~CCYATbIBaIOTC.R Ha RpOMWKyTOYHOM BpeMeHHOM YpOBHe, MOWHO 1236emaTb TPy~HOCTSI 

peruerrm C35cTemI Henmie&ibIx anre6pameemx ypa3aemGi Iia Kaxzokf ispeMeKKonn yposse. 

~O~~qeHHbIe TaKHM cna~o6o~x ~~C~eHH~e pe3gJlbTaTbI ~~O~~~erBO~3~Te~bHO COr~aC~~TC~ C 

1tMe~~~~~I~C~ 3Ha~I~Ti~~eCK~~M~i peU.IeHWiMI~. 


